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AAE 550 MULTIDISCIPLINARY DESIGN OPTIMIZATION 
 

I. DESIGN PROBLEM  
BeanCo produces 2 products: standard coffee machines and premium coffee + expresso 
machines. BeanCo currently produces all their products manually with 4 workers per assembly 
line that are paid $15/hour, but BeanCo can install automated lines with only a single roboticist 
per line that is paid $35/hour. Manual assembly lines cost $10,000 maintain annually and can 
produce 5 standard or 2 premium machines per hour. Robotic lines cost $200,000 to maintain 
annually but can produce 8 standard or 4 premium machines per hour. All workers will work at 
their normal rate of pay for up to 1800 hours per year and 1.5x overtime for up to 540 hours 
annually. Since BeanCo’s coffee machines are indirect competitors on the market, the expected 
demand for each machine is a function of both machines’ price: 

𝑄𝑄𝑠𝑠�𝑃𝑃𝑠𝑠,𝑃𝑃𝑝𝑝� = 2,000,000𝑃𝑃𝑠𝑠−0.5 − 500,000𝑃𝑃𝑝𝑝−0.8 − 200,000 

𝑄𝑄𝑝𝑝�𝑃𝑃𝑠𝑠,𝑃𝑃𝑝𝑝� = 2,000,000𝑃𝑃𝑝𝑝−0.4 − 100,000𝑃𝑃𝑠𝑠−0.8 − 200,000 

Materials costs are $6 for standard and $20 for premium machines. Maximize profit by choosing 
the number of manual and robotic assembly lines, market price for standard and premium coffee 
machines, and the quantity of standard and premium machines to produce manually and 
automatically. For simplicity, neglect switchover time for assembly lines. 

 

Figure 1: Reference of Demand Curves without Indirect Competition Factored in 

  

0 50 100 150 200 250 300

Price [$]

0

2

4

6

8

10

12

An
nu

al
 D

em
an

d 
[u

ni
ts

]

10 5 Expected Demand of Each Product without Competition

Q
s (P s )

Q
p

(P
p

)



  AAE 550, FALL 2022 
  FINAL PROJECT, PAGE 2 
 

©Matthew Ryan Pugsley, Purdue University, 2022 
 

II.  FORMAL PROBLEM STATEMENT 
 

Minimize [200000𝐿𝐿𝑎𝑎 
+10000𝐿𝐿𝑚𝑚 
+35 ∙ 𝐿𝐿𝑎𝑎 ∙ 𝐵𝐵𝑎𝑎(𝑥𝑥) 
+4 ∙ 15 ∙ 𝐿𝐿𝑚𝑚 ∙ 𝐵𝐵𝑚𝑚(𝑥𝑥) 
−(𝑄𝑄𝑠𝑠,𝑎𝑎 + 𝑄𝑄𝑠𝑠,𝑚𝑚) ∗ (𝑃𝑃𝑠𝑠 − 6) 
−(𝑄𝑄𝑝𝑝,𝑎𝑎 + 𝑄𝑄𝑝𝑝,𝑚𝑚) ∗ (𝑃𝑃𝑝𝑝 − 20)] 

Minimize [Automated line costs 
     +     Manual line costs 
     +     Cost of Labor on Automatic Lines 
     +     Cost of Labor on Manual Lines 

- Standard Machine Profits 
- Premium Machine Profits] 

x       = [𝐿𝐿𝑎𝑎 , 𝐿𝐿𝑚𝑚 , 𝑄𝑄𝑠𝑠,𝑎𝑎 , 𝑄𝑄𝑠𝑠,𝑚𝑚 ,
𝑄𝑄𝑝𝑝,𝑎𝑎 , 𝑄𝑄𝑝𝑝,𝑚𝑚 , 𝑃𝑃𝑠𝑠 , 𝑃𝑃𝑝𝑝] Design Variable Vector 

   
Subject 
to: 

(𝑄𝑄𝑠𝑠,𝑎𝑎 + 𝑄𝑄𝑠𝑠,𝑚𝑚)/200,000 
−10𝑃𝑃𝑠𝑠−0.5 + 2.5𝑃𝑃𝑝𝑝−0.8 + 1 ≤ 0 

Standard production, limited by demand 
(order lowered) 

 (𝑄𝑄𝑝𝑝,𝑎𝑎 + 𝑄𝑄𝑝𝑝,𝑚𝑚)/200,000 
−10𝑃𝑃𝑝𝑝−0.4 + 0.5𝑃𝑃𝑠𝑠−0.8 + 1 ≤ 0 

Premium production, limited by demand 
(order lowered) 

 𝑄𝑄𝑠𝑠,𝑚𝑚

11700
+
𝑄𝑄𝑝𝑝,𝑚𝑚

4680
− 𝐿𝐿𝑚𝑚 ≤ 0 

Manual production, 
limited by # of lines 

 𝑄𝑄𝑠𝑠,𝑎𝑎

18720
+
𝑄𝑄𝑝𝑝,𝑎𝑎

9360
− 𝐿𝐿𝑎𝑎 ≤ 0 

Automated production,  
limited by # of lines 

   
Where: 𝐿𝐿𝑎𝑎 ≥ 0 Automated Lines (integer) 
 𝐿𝐿𝑚𝑚 ≥ 0 Manual Lines (integer) 
 𝑄𝑄𝑠𝑠,𝑎𝑎 ≥ 0 Standard, Automated Production (integer) 
 𝑄𝑄𝑠𝑠,𝑚𝑚 ≥ 0 Standard, Manual Production (integer) 
 𝑄𝑄𝑝𝑝,𝑎𝑎 ≥ 0 Premium, Automated Production (integer) 
 𝑄𝑄𝑝𝑝,𝑚𝑚 ≥ 0 Premium, Manual Production (integer) 
 𝑃𝑃𝑠𝑠 ≥ 0 Price of Standard Coffee Machine 
 𝑃𝑃𝑝𝑝 ≥ 0 Price of Premium Coffee Machine 
   
Other 
Useful 
Values: 𝐵𝐵𝑎𝑎(𝑥𝑥) and 𝐵𝐵𝑚𝑚(𝑥𝑥) 

Billable hours of automated and manual lines 
(Used in objective function) 
(Piecewise function) 
Billable Hours = (Normal hours + 1.5 x Overtime hours) 

 
𝑇𝑇𝑚𝑚 =

𝑄𝑄𝑠𝑠,𝑚𝑚
5 +

𝑄𝑄𝑝𝑝,𝑚𝑚
2

𝐿𝐿𝑚𝑚
 Total annual hours for each line worker 

 
𝑇𝑇𝑎𝑎 =

𝑄𝑄𝑠𝑠,𝑎𝑎
8 +

𝑄𝑄𝑝𝑝,𝑎𝑎
4

𝐿𝐿𝑎𝑎
 Total annual hours for each roboticist 
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III.  METHODOLOGY. 
 

Some of the variable in this problem are integers (for example, a fractional number for assembly 
lines doesn’t make sense) and since the functions involved in the problem become discontinuous 
with integers, I decided to compare a 2 solution approaches. 

1. Ignore integer constraints and use Sequential Quadratic Programming (SQP) with 
MATLAB’s fmincon function to get an approximate ‘best case’ answer to use as a sanity 
check and inform bounds for a Genetic Algorithm setup. 

2. Use a Genetic Algorithm (GA) with the GA550 implementation (see appendix A4 for 
coding) because it can directly encode integer variables and handle the discontinuous 
problem as it is written. 

SQP: I did not use user defined gradients because I knew my final solution would likely come 
from the GA and I judged the effort to figure out gradients to be higher than the computational 
cost of using numerical gradients. I made use of MATLAB’s fmincon SQP ability to accept 
linearized constraints for 𝑔𝑔3 and 𝑔𝑔4, slightly speeding up the evaluation. 

GA: I used the SQP results in [IV. RESULTS TABLES] to inform my setup: 

- For 𝑥𝑥1 and 𝑥𝑥2 I chose to use 5-bit encoding starting from 0 and representing integers up 
to 31 as I was seeing no results approaching this high of a value 

- For 𝑥𝑥3 to 𝑥𝑥6 I selected the lowest value of integer encoding starting from 0 that would 
represent up to 150000 products as this was roughly the total production found with SQP. 
This yielded 18 bits with an upper bound of 262143 for each variable. 

- For price I selected a max price of $100 and $300 for 𝑥𝑥7 and 𝑥𝑥8 respectively and then 
selected 15 bits so that the resolution was ~$0.01 

I varied my 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 values but I did start at the class recommendation to begin with. 
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IV. RESULTS TABLES 
 

Direct Constrained Minimization (fmincon with SQP) 
 Run 1 Run 2 Run 3 

𝒙𝒙𝟎𝟎 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

10
10
10
10
10
10
10
10⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

4.4
16.72
0.01

80232
40521
28089

47
145 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 

Close to 𝒙𝒙∗from run 1 
⎩
⎪
⎪
⎨

⎪
⎪
⎧

50
50

500000
500000
500000
500000

1
1 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 

𝒙𝒙∗ 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

4.33
16.72
0.06

80232.87
40521.47
28089.15

47.71
145.07 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

7.39
8.86

0
79770.19
69205.35

0
47.85

144.29 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

7.39
8.86

0
79768.04
69205.19

0.00
47.85

144.29 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝑓𝑓(𝒙𝒙∗) -8693200.14 -8739876.36 -8739876.29 
𝑔𝑔(𝒙𝒙∗) 

�

−1.3050𝑒𝑒 − 06
−7.6233𝑒𝑒 − 08

−3.8578
−8.8818𝑒𝑒 − 16

� �

−6.2741𝑒𝑒 − 12
−5.6428𝑒𝑒 − 12

−2.0454
0

� �

1.1102𝑒𝑒 − 16
−8.8818𝑒𝑒 − 16

−2.0453
0

� 

# of iterations 62 57 141 
Function 

Count 
749 679 1458 
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Genetic Algorithm 
 Best of Run 1-5 Best of Run 6-10 Best of Run 11-15 

Population 
Size 

448 
(Class recommended) 

448 1792 

Mutation 
Rate 

0.001126 
(Class recommended) 

0.018017 0.004504 

Number of 
Generations 

151 1000 364 

𝒙𝒙∗ 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

11
14

83668
45986
57070
30489
34.52

121.27⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

9
19

29709
63675
59942
12427
43.33

139.59⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

10
16

61342
44641
59514
22161
39.65

128.03⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

𝑓𝑓(𝒙𝒙∗) -7806642.59 -8315877.32 -8160866.33 
𝑔𝑔(𝒙𝒙∗) 

�

−2.0079𝑒𝑒 − 05
−1.2994𝑒𝑒 − 06

−3.5548
−0.4333

� �

−0.0042
−5.5722𝑒𝑒 − 04
−10.9024
−1.0089

� �

−0.0066
−0.0010
−7.4493
−0.3649

� 

Function 
Count 

67648 448000 652288 

 

*Note that for each column of results for the genetic algorithm above, I took the best of 5 total 
runs on the same settings to help account for RNG woes 
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V.  DISCUSSION   
 

To find the final design to present I first returned to run 2 of SQP. 

Best SQP result: 

𝑥𝑥∗ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

7.39
8.86

0
79770.19
69205.35

0
47.85

144.29 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

, 𝑓𝑓(𝑥𝑥∗) = −8739876.36 ,𝑔𝑔(𝑥𝑥∗) = �

−6.2741𝑒𝑒 − 12
−5.6428𝑒𝑒 − 12

−2.0454
0

� 

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = $8,739,876.36) 

 

With a small margin of error, this appears to be the global optimum of the SQP problem as 
several iterations of SQP with different 𝑥𝑥0 values converged to this design. Since the best profit 
recorded with the GA was $8,315,877.32, the SQP result is obviously ‘better’ but it is not a valid 
design without the integer consideration applied to 𝑥𝑥1−6. I wanted to see if this solution could be 
made valid with some rounding and minor manual tweaks to variables, so I used MATLAB’s 
floor() function on the design variable vector and arrived at: 

𝑥𝑥∗ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

7
8
0

79770
69205

0
47

144 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

,𝑓𝑓(𝑥𝑥∗) = −8334289.38 ,𝑔𝑔(𝑥𝑥∗) = �

−0.0115
−0.0203
−1.1821
0.3937

� 

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = $8,334,289.38) 

 

Notice that this modified solution is only a $18,412.06 gain on the best result from the GA and 
the solution is now infeasible on constraint 𝑔𝑔4 indicating (with some math) that 𝑄𝑄𝑝𝑝𝑝𝑝 (𝑥𝑥5) needs 
to be reduced by 3686 units. At the chosen 𝑃𝑃𝑝𝑝 (𝑥𝑥8) this would result in a profit of only 
$7,944,034.13 – much lower than the best GA result. From this I concluded that my initial 
intuition was correct; the problem needs to be tackled directly with integer encoding. 
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My next step in analysis was to examine the result of the genetic algorithm more closely. 

Best GA result: 

𝑥𝑥∗ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

9
19

29709
63675
59942
12427
43.33

139.59⎭
⎪
⎪
⎬

⎪
⎪
⎫

,𝑓𝑓(𝑥𝑥∗) = −8315877.32 ,𝑔𝑔(𝑥𝑥∗) = �

−0.0042
−5.5722𝑒𝑒 − 04
−10.9024
−1.0089

� 

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = $8,315,877.32) 

 

This solution is obviously better than any other valid solution I had found but I wondered if I 
could once again try to slightly modify my results manually. The intuition of the problem that I 
gained from analysis of the SQP results told me that the large negative 𝑔𝑔3 and 𝑔𝑔4 were likely 
indicating that I could drop a few assembly lines and still meet the production required. To play 
with this idea, I decided to drop 𝐿𝐿𝑚𝑚 (𝑥𝑥2) by increments of 1 until the total profit stopped 
increasing or 𝑔𝑔3 became positive, then repeated this process for 𝐿𝐿𝑎𝑎 (𝑥𝑥1) referencing against the 
𝑔𝑔4 constraint now. With these changes I arrived at this final design to present: 

 

Final Design: 

𝒙𝒙∗ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝟖𝟖
𝟏𝟏𝟏𝟏

𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐
𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔
𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟒𝟒𝟒𝟒.𝟑𝟑𝟑𝟑
𝟏𝟏𝟏𝟏𝟏𝟏.𝟓𝟓𝟓𝟓⎭

⎪
⎪
⎬

⎪
⎪
⎫

, 𝒇𝒇(𝒙𝒙∗) = −𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖.𝟑𝟑𝟑𝟑,𝒈𝒈(𝒙𝒙∗) = �

−𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎
−𝟓𝟓.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 − 𝟎𝟎𝟎𝟎

−𝟐𝟐.𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗
−𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

� 

(𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = $𝟖𝟖,𝟓𝟓𝟓𝟓𝟓𝟓,𝟎𝟎𝟎𝟎𝟎𝟎.𝟑𝟑𝟑𝟑) 

An improvement of $248,142.05 is a great result from very easy changes to the design vector and 
this design is valid and feasible. Since this is $175,856.99 in profit below the SQP non-integer 
result, I could imagine that there would be some room for improvement, but another method 
should be implemented from this point to try for further improvements. 
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VI.  CONCLUSION 
 

This problem is informative as to why integer compatible algorithms are necessary to find valid 
solutions to problems that seem solvable by SQP or other methods. It should be noted how the 
implementation here throws caution to the wind for reducing computational cost though. My best 
GA run required 448000 function evaluations compared to 679 for my best SQP run and that 
doesn’t even consider that I ran the GA 15 times total which was very time consuming compared 
to the SQP approximations I ran. I also made some manual adjustments at the end of 
optimization in order to arrive at my final solution which requires some intuition and effort on 
the optimizing engineer’s part. If I needed to solve a very large version of this problem or many 
similar problems simultaneously, I would need to refine this method some. One method I would 
investigate if asked to solve this again is using modifications to simulated annealing to refine my 
final answer from the GA by “searching around” the solution a little for improvements. I also 
know that there are more optimization methods that cover integers, but I am not familiar enough 
to adapt techniques into the AAE550 toolkit. 
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VII. APPENDICES. 
 

A1.1 – Objective function for SQP Minimization [objective.m] 

function [f] = objective(x) 
%   This function calculates the objective value for this project for use 
%   in the SQP minimization technique 
%Created by Matt Pugsley - 2022 
 
L_a = x(1);      %Number of Automatic Lines 
L_m = x(2);      %Number of Manual Lines 
Q_sa = x(3);     %Production of Standard Machines on Automated Lines 
Q_sm = x(4);     %Production of Standard Machines on Manual Lines 
Q_pa = x(5);     %Production of Premium Machines on Automated Lines 
Q_pm = x(6);     %Production of Premium Machines on Manual Lines 
P_s = x(7);      %Price of a Standard Coffee Machine 
P_p = x(8);      %Price of a Premium Coffee Machine 
 
%Annual hours of each type of worker 
T_m = (Q_sm/5 + Q_pm/2)/L_m; 
T_a = (Q_sa/8 + Q_pa/4)/L_a; 
 
%Figure out the billable hours for Roboticists 
if T_a>1800 
    B_a = T_a + 0.5*(T_a-1800); 
else 
    B_a = T_a; 
end 
 
%Figure out the billable hours for line workers 
if T_m>1800 
    B_m = T_m + 0.5*(T_m-1800); 
else 
    B_m = T_m; 
end 
 
%calculate the objective function 
f = 200000*L_a ... 
    + 10000*L_m ... 
    + 35*L_a*B_a ... 
    + 4*15*L_m*B_m ... 
    - (Q_sa + Q_sm)*(P_s-6) ... 
    - (Q_pa + Q_pm)*(P_p-20); 
end 
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A1.2 – Objective function for GA Minimization [objectiveGA.m] 

function [phi] = objectiveGA(x) 
%   This function calculates the modified objective function to be used 
%   with the genetic algorithm approach to my final project. 
%   Note that this includes the calculation of constraint values directly 
%   without another function call 
%Created by Matt Pugsley - 2022 
 
L_a = x(1);      %Number of Automatic Lines 
L_m = x(2);      %Number of Manual Lines 
Q_sa = x(3);     %Production of Standard Machines on Automated Lines 
Q_sm = x(4);     %Production of Standard Machines on Manual Lines 
Q_pa = x(5);     %Production of Premium Machines on Automated Lines 
Q_pm = x(6);     %Production of Premium Machines on Manual Lines 
P_s = x(7);      %Price of a Standard Coffee Machine 
P_p = x(8);      %Price of a Premium Coffee Machine 
 
c = [1 1 1 1];   %Constraint Multipliers 
 
g(1) = (Q_sa+Q_sm)/200000-10*P_s^(-0.5)+2.5*P_p^(-0.8)+1; 
g(2) = (Q_pa+Q_pm)/200000-10*P_p^(-0.4)+0.5*P_s^(-0.8)+1; 
g(3) = Q_sm/11700+Q_pm/4680-L_m; 
g(4) = Q_sa/18720+Q_pa/9360-L_a; 
 
%Penalty Function 
P = sum(c .* (~(g<=0)) .* (1+g)); 
 
%Annual hours of each type of worker 
T_m = (Q_sm/5 + Q_pm/2)/L_m; 
T_a = (Q_sa/8 + Q_pa/4)/L_a; 
 
%Figure out the billable hours for Roboticists 
if T_a>1800 
    B_a = T_a + 0.5*(T_a-1800); 
else 
    B_a = T_a; 
end 
 
%Figure out the billable hours for line workers 
if T_m>1800 
    B_m = T_m + 0.5*(T_m-1800); 
else 
    B_m = T_m; 
end 
 
%calculate the objective function 
f = 200000*L_a ... 
    + 10000*L_m ... 
    + 35*L_a*B_a ... 



  AAE 550, FALL 2022 
  FINAL PROJECT, PAGE 11 
 

©Matthew Ryan Pugsley, Purdue University, 2022 
 

    + 4*15*L_m*B_m ... 
    - (Q_sa + Q_sm)*(P_s-6) ... 
    - (Q_pa + Q_pm)*(P_p-20); 
 
%penalty multiplier - being pretty aggressive bc of magnitude of obj 
rp = 100000000; 
 
%Modified objective 
phi = f + rp*P; 
 
end 
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A2 – Constraint Function for SQP Minimization [nonlinearConstraints.m] 

function [C,Ceq] = nonlinearConstraints(x) 
%   This function calculates the 2 nonlinear constraints in this project 
%   but it is useful to note that there are 2 linear constraints handled 
%   directly by the SQP implementation. The constraints are formatted to 
%   directly be received by fmincon as a C vector 
%Created by Matt Pugsley - 2022 
 
    L_a = x(1);      %Number of Automatic Lines 
    L_m = x(2);      %Number of Manual Lines 
    Q_sa = x(3);     %Production of Standard Machines on Automated Lines 
    Q_sm = x(4);     %Production of Standard Machines on Manual Lines 
    Q_pa = x(5);     %Production of Premium Machines on Automated Lines 
    Q_pm = x(6);     %Production of Premium Machines on Manual Lines 
    P_s = x(7);      %Price of a Standard Coffee Machine 
    P_p = x(8);      %Price of a Premium Coffee Machine 
 
    C = [(Q_sa + Q_sm)/200000-10*P_s.^(-0.5)+2.5*P_p.^(-0.8)+1; 
        (Q_pa + Q_pm)/200000-10*P_p.^(-0.4)+0.5*P_s.^(-0.8)+1]; 
    Ceq = []; 
end 

*Note that linear constraints are handled in the main script for SQP 

*Note that there is no constraint function for the GA because they are incorporated in the 
objectiveGA.m function directly.  

 

Direct MATLAB code representing all 4 constraint equations in one place is below: 

g1 = (Q_sa+Q_sm)/200000-10*P_s^(-0.5)+2.5*P_p^(-0.8)+1 

g2 = (Q_pa+Q_pm)/200000-10*P_p^(-0.4)+0.5*P_s^(-0.8)+1 

g3 = Q_sm/11700+Q_pm/4680-L_m 

g4 = Q_sa/18720+Q_pa/9360-L_a 
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A3.1 – Script for calling SQP [FinalProject_SQP.m] 

clc 
clear all 
close all 
%Created by Matt Pugsley - 2022 
 
format bank 
 
X0 = [10 10 10 10 10 10 10 10]'; 
 
%L_a = x(1)     Number of Automatic Lines 
%L_m = x(2)     Number of Manual Lines 
%Q_s,a = x(3)   Production of Standard Machines on Automated Lines 
%Q_s,m = x(4)   Production of Standard Machines on Manual Lines 
%Q_p,a = x(5)   Production of Premium Machines on Automated Lines 
%Q_p,m = x(6)   Production of Premium Machines on Manual Lines 
%P_s = x(7)     Price of a Standard Coffee Machine 
%P_p = x(8)    Price of a Premium Coffee Machine 
 
demand_s = @(Ps,Pp) 2000000*Ps.^(-0.5)-500000*Pp.^(-0.8)-200000; 
demand_p = @(Ps,Pp) 2000000*Pp.^(-0.4)-100000*Ps.^(-0.8)-200000; 
 
A = [0 -1 0 1/11700 0 1/4680 0 0; 
     -1 0 1/18720 0 1/9360 0 0 0]; 
B = [0;0]; 
 
A_eq = []; 
B_eq = []'; 
 
LB = [0 0 0 0 0 0 0 0]'; 
UB = [inf inf inf inf inf inf inf inf]'; 
 
options = optimoptions('fmincon', 'Algorithm', 'sqp','MaxFunctionEvaluations',5000); 
 
[xstar,fval,exitflag,output] = 
fmincon(@objective,X0,A,B,A_eq,B_eq,LB,UB,@nonlinearConstraints,options); 
 
% Let's look at some results ------------------------------------------ 
L_a = xstar(1)      %Number of Automatic Lines 
L_m = xstar(2)      %Number of Manual Lines 
Q_sa = xstar(3)     %Production of Standard Machines on Automated Lines 
Q_sm = xstar(4)     %Production of Standard Machines on Manual Lines 
Q_pa = xstar(5)     %Production of Premium Machines on Automated Lines 
Q_pm = xstar(6)     %Production of Premium Machines on Manual Lines 
P_s = xstar(7)      %Price of a Standard Coffee Machine 
P_p = xstar(8)      %Price of a Premium Coffee Machine 
T_m = (Q_sm/5 + Q_pm/2)/L_m     %Total annual hours for each line worker 
T_a = (Q_sa/8 + Q_pa/4)/L_a     %Total annual hours for each roboticist 
profit = -fval      %Total Profit 
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Manual_production = Q_sm+Q_pm       %Total products made by humans 
Automated_production = Q_sa+Q_pa    %Total products made by robots 
Standard_production = Q_sa+Q_sm     %Standard coffee machines produced 
Premuim_production = Q_pa+Q_pm      %Premuim coffee machines produced 
standard_demand = demand_s(P_s,P_p) %Demand for Standard Machines 
premium_demand = demand_p(P_s,P_p)  %Demand for Premium Machines 
 
xstar = xstar 
fval = fval 
format short 
g1 = (Q_sa+Q_sm)/200000-10*P_s^(-0.5)+2.5*P_p^(-0.8)+1 
g2 = (Q_pa+Q_pm)/200000-10*P_p^(-0.4)+0.5*P_s^(-0.8)+1 
g3 = Q_sm/11700+Q_pm/4680-L_m 
g4 = Q_sa/18720+Q_pa/9360-L_a 
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A3.2 – Script for calling GA [FinalProject_GA.m] 

clc 

clear all 
close all 
%Created by Matt Pugsley - 2022 
 
format bank 
 
%L_a = x(1)     Number of Automatic Lines 
%L_m = x(2)     Number of Manual Lines 
%Q_s,a = x(3)   Production of Standard Machines on Automated Lines 
%Q_s,m = x(4)   Production of Standard Machines on Manual Lines 
%Q_p,a = x(5)   Production of Premium Machines on Automated Lines 
%Q_p,m = x(6)   Production of Premium Machines on Manual Lines 
%P_s = x(7)     Price of a Standard Coffee Machine 
%P_p = x(8)    Price of a Premium Coffee Machine 
 
demand_s = @(Ps,Pp) 2000000*Ps.^(-0.5)-500000*Pp.^(-0.8)-200000; 
demand_p = @(Ps,Pp) 2000000*Pp.^(-0.4)-100000*Ps.^(-0.8)-200000; 
 
options = goptions([]); 
 
vlb = [0 0 0 0 0 0 0 0]; %Lower bound of each gene 
vub = [31 31 262143 262143 262143 262143 100 300]; %Upper bound of each gene 
bits = [5 5 18 18 18 18 15 15]; %number of bits describing each gene 
 
%bit string affinity 
% options(2) = 0.90 
 
%class recommended population size 
npop = 4*sum(bits); 
%Setting actual population size for this problem 
options(11) = npop; 
 
%class recommended mutation chance 
pmut = (sum(bits)+1)/(2*npop*sum(bits)); 
%Setting Actual Pmut for this problem 
options(13) = pmut; 
 
%Maximum iterations 
options(14) = 1000; 
 
[xstar,fval,stats,nfit,fgen,lgen,lfit] = ... 
    GA550('objectiveGA',[ ],options,vlb,vub,bits); 
 
% Let's look at some results ------------------------------------------ 
L_a = xstar(1)      %Number of Automatic Lines 
L_m = xstar(2)      %Number of Manual Lines 
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Q_sa = xstar(3)     %Production of Standard Machines on Automated Lines 
Q_sm = xstar(4)     %Production of Standard Machines on Manual Lines 
Q_pa = xstar(5)     %Production of Premium Machines on Automated Lines 
Q_pm = xstar(6)     %Production of Premium Machines on Manual Lines 
P_s = xstar(7)      %Price of a Standard Coffee Machine 
P_p = xstar(8)      %Price of a Premium Coffee Machine 
T_m = (Q_sm/5 + Q_pm/2)/L_m     %Total annual hours for each line worker 
T_a = (Q_sa/8 + Q_pa/4)/L_a     %Total annual hours for each roboticist 
profit = -fval      %Total Profit 
Manual_production = Q_sm+Q_pm       %Total products made by humans 
Automated_production = Q_sa+Q_pa    %Total products made by robots 
Standard_production = Q_sa+Q_sm     %Standard coffee machines produced 
Premuim_production = Q_pa+Q_pm      %Premuim coffee machines produced 
standard_demand = demand_s(P_s,P_p) %Demand for Standard Machines 
premium_demand = demand_p(P_s,P_p)  %Demand for Premium Machines 
 
xstar = xstar 
fval = fval 
format short 
g1 = (Q_sa+Q_sm)/200000-10*P_s^(-0.5)+2.5*P_p^(-0.8)+1 
g2 = (Q_pa+Q_pm)/200000-10*P_p^(-0.4)+0.5*P_s^(-0.8)+1 
g3 = Q_sm/11700+Q_pm/4680-L_m 
g4 = Q_sa/18720+Q_pa/9360-L_a 
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A4 – Genetic Algorithm Coding [GA550.m] 

function [xopt,fopt,stats,nfit,fgen,lgen,lfit] = GA550(fun, ... 
    x0,options,vlb,vub,bits,P1,P2,P3,P4,P5,P6,P7P,P8,P9,P10) 
%GA550 minimizes a fitness function using a simple genetic algorithm. 
% 
% X=GA550('FUN',X0,OPTIONS,VLB,VUB) uses a simple 
%       genetic algorithm to find a minimum of the fitness function 
%       FUN.  FUN can be a user-defined M-file: FUN.M, or it can be a 
% string containing the function itself.  The user may define all 
%       or part of an initial population X0. Any undefined individuals 
% will be randomly generated between the lower and upper bounds 
% (VLB and VUB).  If X0 is an empty matrix, the entire initial 
% population will be randomly generated.  Use OPTIONS to specify 
% flags, tolerances, and input parameters.  Type HELP GOPTIONS 
%       for more information and default values. 
% 
% X=GA550('FUN',X0,OPTIONS,VLB,VUB,BITS) allows the user to 
% define the number of BITS used to code non-binary parameters 
% as binary strings.  Note: length(BITS) must equal length(VLB) 
% and length(VUB).  If BITS is not specified, as in the previous 
% call, the algorithm assumes that the fitness function is 
% operating on a binary population. 
% 
% X=GA550('FUN',X0,OPTIONS,VLB,VUB,BITS,P1,P2,...) allows up 
% to ten arguments, P1,P2,... to be passed directly to FUN. 
% F=FUN(X,P1,P2,...). If P1,P2,... are not defined, F=FUN(X). 
% 
% [X,FOPT,STATS,NFIT,FGEN,LGEN,LFIT]=GA550(<ARGS>) 
%          X       - design variables of best ever individual 
%          FOPT    - fitness value of best ever individual 
%          STATS   - [min mean max stopping_criterion] fitness values 
%                    for each generation 
%          NFIT  - number of fitness function evalations 
%          FGEN    - first generation population 
%          LGEN    - last generation population 
%          LFIT    - last generation fitness 
% 
%       The algorithm implemented here is based on the book: Genetic 
%       Algorithms in Search, Optimization, and Machine Learning, 
%       David E. Goldberg, Addison-Wiley Publishing Company, Inc., 
%       1989. 
% 
% Originally created on 1/10/93 by Andrew Potvin, Mathworks, Inc. 
% Modified on 2/3/96 by Joel Grasmeyer. 
%    Modified on 11/12/02 by Bill Crossley. 
%    Modified on 7/20/04 by Bill Crossley. 
 
% Make best_feas global for stopping criteria (4/13/96) 
global best_feas 
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global gen 
global fit_hist 
% Load input arguments and check for errors 
if nargin<4, 
    error('No population bounds given.') 
elseif (size(vlb,1)~=1) | (size(vub,1)~=1), 
    % Remark: this will change if algorithm accomodates matrix variables 
    error('VLB and VUB must be row vectors') 
elseif (size(vlb,2)~=size(vub,2)), 
    error('VLB and VUB must have the same number of columns.') 
elseif (size(vub,2)~=size(x0,2)) & (size(x0,1)>0), 
    error('X0 must all have the same number of columns as VLB and VUB.') 
elseif any(vlb>vub), 
    error('Some lower bounds greater than upper bounds') 
else 
    x0_row = size(x0,1); 
    for i=1:x0_row, 
        if any(x0(x0_row,:)<vlb) | any(x0(x0_row,:)>vub), 
            error('Some initial population not within bounds.') 
        end % if initial pop not within bounds 
    end % for initial pop 
end % if nargin<4 
 
if nargin<6, 
    bits = []; 
elseif (size(bits,1)~=1) | (size(bits,2)~=size(vlb,2)), 
    % Remark: this will change if algorithm accomodates matrix variables 
    error('BITS must have one row and length(VLB) columns') 
elseif any(bits~=round(bits)) | any(bits<1), 
    error('BITS must be a vector of integers >0') 
end % if nargin<6 
 
% Form string to call for function evaluation 
if ~( any(fun<48) | any(fun>122) | any((fun>90) & (fun<97)) | ... 
        any((fun>57) & (fun<65)) ), 
    % Only alphanumeric characters implies that 'fun' is a separate m-file 
    evalstr = [fun '(x']; 
    for i=1:nargin-6, 
        evalstr = [evalstr,',P',int2str(i)]; 
    end 
else 
    % Non-alphanumeric characters implies that the function is contained 
    % within the single quotes 
    evalstr = ['(',fun]; 
end 
 
% Determine all options 
% Remark: add another options index for type of termination criterion 
if size(options,1)>1, 
    error('OPTIONS must be a row vector') 
else 
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    % Use default options for those that were not passed in 
    options = goptions(options); 
end 
PRINTING = options(1); 
BSA = options(2); 
fit_tol = options(3); 
nsame = options(4)-1; 
elite = options(5); 
 
% Since operators are tournament selection and uniform crossover and 
% default coding is Gray / binary, set crossover rate to 0.50 and use 
% population size and mutation rate based on Williams, E. A., and Crossley, 
% W. A., "Empirically-derived population size and mutation rate guidelines 
% for a genetic algorithm with uniform crossover," Soft Computing in 
% Engineering Design and Manufacturing, 1998.  If user has entered values 
% for these options, then user input values are used. 
if options(11) == 0, 
    pop_size = sum(bits) * 4; 
else 
    pop_size = options(11); 
end 
if options(12) == 0, 
    Pc = 0.5; 
else 
    Pc = options(12); 
end 
if options(13) == 0, 
    Pm = (sum(bits) + 1) / (2 * pop_size * sum(bits)); 
else 
    Pm = options(13); 
end 
max_gen = options(14); 
% Ensure valid options: e.q. Pc,Pm,pop_size,max_gen>0, Pc,Pm<1 
if any([Pc Pm pop_size max_gen]<0) | any([Pc Pm]>1), 
    error('Some Pc,Pm,pop_size,max_gen<0 or Pc,Pm>1') 
end 
 
% Encode fitness (cost) function if necessary 
ENCODED = any(any(([vlb; vub; x0]~=0) & ([vlb; vub; x0]~=1))) |  .... 
    ~isempty(bits); 
if ENCODED, 
    [fgen,lchrom] = encode(x0,vlb,vub,bits); 
else 
    fgen = x0; 
    lchrom = size(vlb,2); 
end 
 
% Display warning if initial population size is odd 
if rem(pop_size,2)==1, 
    disp('Warning: Population size should be even.  Adding 1 to population.') 
    pop_size = pop_size +1; 
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end 
 
% Form random initial population if not enough supplied by user 
if size(fgen,1)<pop_size, 
    fgen = [fgen; (rand(pop_size-size(fgen,1),lchrom)<0.5)]; 
end 
xopt = vlb; 
nfit = 0; 
new_gen = fgen; 
isame = 0; 
bitlocavg = mean(fgen,1);  % initial bit string affinity 
BSA_pop = 2 * mean(abs(bitlocavg - 0.5)); 
fopt = Inf; 
stats = []; 
 
% Header display 
if PRINTING>=1, 
    if ENCODED, 
        disp('Variable coding as binary chromosomes successful.') 
        disp('') 
        fgen = decode(fgen,vlb,vub,bits); 
    end 
    disp('                   Fitness statistics') 
    if nsame > 0 
        disp('Generation Minimum      Mean         Maximum       isame') 
    elseif BSA > 0 
        disp('Generation Minimum      Mean         Maximum       BSA') 
    else 
        disp('Generation Minimum      Mean         Maximum       not used') 
    end 
end 
 
% Set up main loop 
STOP_FLAG = 0; 
for generation = 1:max_gen+1, 
    old_gen = new_gen; 
 
    % Decode binary strings if necessary 
    if ENCODED, 
        x_pop = decode(old_gen,vlb,vub,bits); 
    else 
        x_pop = old_gen; 
    end 
 
    % Get fitness of each string in population 
    for i = 1:pop_size, 
        x = x_pop(i,:); 
        fitness(i) = eval([evalstr,')']); 
        nfit = nfit + 1; 
    end 
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    % Store minimum fitness value from previous generation (except for 
    % initial generation) 
    if generation > 1, 
        min_fit_prev = min_fit; 
        min_gen_prev = min_gen; 
        min_x_prev = min_x; 
    end 
 
    % identify worst (maximum) fitness individual in current generation 
    [max_fit,max_index] = max(fitness); 
 
    % impose elitism - currently only one individual; this replaces worst 
    % individual of current generation with best of previous generation 
    if (generation > 1 & elite > 0), 
        old_gen(max_index,:) = min_gen_prev; 
        x_pop(max_index,:) = min_x_prev; 
        fitness(max_index) = min_fit_prev; 
    end 
 
    % identify best (minimum) fitness individual in current generation and 
    % store bit string and x values 
    [min_fit,min_index] = min(fitness); 
    min_gen = old_gen(min_index,:); 
    min_x = x_pop(min_index,:); 
 
    % Store best fitness and x values 
    if min_fit < fopt, 
        fopt = min_fit; 
        xopt = min_x; 
    end 
 
    % Compute values for isame or BSA_pop stopping criteria 
    if nsame > 0 
        if generation > 1 
            if min_fit_prev == min_fit 
                isame = isame + 1; 
            else 
                isame = 0; 
            end 
        end 
    elseif BSA > 0 
        bitlocavg = mean(old_gen,1); 
        BSA_pop = 2 * mean(abs(bitlocavg - 0.5)); 
    end 
 
 
    % Calculate generation statistics 
    if nsame > 0 
        stats = [stats; generation-1,min(fitness),mean(fitness), ... 
            max(fitness), isame]; 
    elseif BSA > 0 
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        stats = [stats; generation-1,min(fitness),mean(fitness), ... 
            max(fitness), BSA_pop]; 
    else 
        stats = [stats; generation-1,min(fitness),mean(fitness), ... 
            max(fitness), 0]; 
    end 
 
    % Display if necessary 
    if PRINTING>=1, 
        disp([sprintf('%5.0f %12.6g %12.6g %12.6g %12.6g', stats(generation,1), ... 
                stats(generation,2),stats(generation,3), stats(generation,4),... 
                stats(generation,5))]); 
    end 
 
    % Check for termination 
    % The default termination criterion is bit string affinity.  Also 
    % available are fitness tolerance across five generations and number of 
    % consecutive generations with same best fitness.  These can be used 
    % concurrently. 
    if fit_tol>0,    % if fit_tol > 0, then fitness tolerance criterion used 
        if generation>5, 
            % Check for normalized difference in fitness minimums 
            if stats(generation,1) ~= 0, 
                if abs(stats(generation-5,1)-stats(generation,1))/ ... 
                        stats(generation,1) < fit_tol 
                    if PRINTING >= 1 
                        fprintf('\n') 
                        disp('GA converged based on difference in fitness minimums.') 
                    end 
                    lfit = fitness; 
                    if ENCODED, 
                        lgen = x_pop; 
                    else 
                        lgen = old_gen; 
                    end 
                    return 
                end 
            else 
                if abs(stats(generation-5,1)-stats(generation,1)) < fit_tol 
                    if PRINTING >= 1 
                        fprintf('\n') 
                        disp('GA converged based on difference in fitness minimums.') 
                    end 
                    lfit = fitness; 
                    if ENCODED, 
                        lgen = x_pop; 
                    else 
                        lgen = old_gen; 
                    end 
                    return 
                end 



  AAE 550, FALL 2022 
  FINAL PROJECT, PAGE 23 
 

©Matthew Ryan Pugsley, Purdue University, 2022 
 

            end 
        end 
    elseif nsame > 0,    % consecutive minimum fitness value criterion 
            if isame == nsame 
                if PRINTING >= 1 
                    fprintf('\n') 
                    disp('GA stopped based on consecutive minimum fitness values.') 
                end 
                lfit = fitness; 
                if ENCODED, 
                    lgen = x_pop; 
                else 
                    lgen = old_gen; 
                end 
                return 
            end 
    elseif BSA > 0,  % bit string affinity criterion 
        if BSA_pop >= BSA, 
            if PRINTING >=1 
                fprintf('\n') 
                disp('GA stopped based on bit string affinity value.') 
            end 
            lfit = fitness; 
            if ENCODED, 
                lgen = x_pop; 
            else 
                lgen = old_gen; 
            end 
            return 
        end 
    end 
 
    % Tournament selection 
    new_gen = tourney(old_gen,fitness); 
 
    % Crossover 
    new_gen = uniformx(new_gen,Pc); 
 
    % Mutation 
    new_gen = mutate(new_gen,Pm); 
 
    % Always save last generation.  This allows user to cancel and 
    % restart with x0 = lgen 
    if ENCODED, 
        lgen = x_pop; 
    else 
        lgen = old_gen; 
    end 
 
 
end % for max_gen 
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% Maximum number of generations reached without termination 
lfit = fitness; 
if PRINTING>=1, 
    fprintf('\n') 
    disp('Maximum number of generations reached without termination') 
    disp('criterion met.  Either increase maximum generations') 
    disp('or ease termination criterion.') 
end 
 
 
% end genetic 
 
function [gen,lchrom,coarse,nround] = encode(x,vlb,vub,bits) 
%ENCODE Converts from variable to binary representation. 
% [GEN,LCHROM,COARSE,nround] = ENCODE(X,VLB,VUB,BITS) 
%       encodes non-binary variables of X to binary.  The variables 
%       in the i'th column of X will be encoded by BITS(i) bits.  VLB 
%       and VUB are the lower and upper bounds on X.  GEN is the binary 
%       representation of these X.  LCHROM=SUM(BITS) is the length of 
%       the binary chromosome.  COARSE(i) is the coarseness of the 
%       i'th variable as determined by the variable ranges and 
%       BITS(i).  ROUND contains the absolute indices of the 
%       X which where rounded due to finite BIT length. 
% 
% Copyright (c) 1993 by the MathWorks, Inc. 
% Andrew Potvin 1-10-93. 
 
% Remark: what about handling case where length(bits)~=length(vlb)? 
 
 
lchrom = sum(bits); 
coarse = (vub-vlb)./((2.^bits)-1); 
[x_row,x_col] = size(x); 
 
gen = []; 
if ~isempty(x), 
   temp = (x-ones(x_row,1)*vlb)./ ... 
          (ones(x_row,1)*coarse); 
   b10 = round(temp); 
   % Since temp and b10 should contain integers 1e-4 is close enough 
   nround = find(b10-temp>1e-4); 
   gen = b10to2(b10,bits); 
end 
 
% end encode 
 
 
function [x,coarse] = decode(gen,vlb,vub,bits) 
%DECODE Converts from binary Gray code to variable representation. 
% [X,COARSE] = DECODE(GEN,VLB,VUB,BITS) converts the binary 
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%       population GEN to variable representation.  Each individual 
%       of GEN should have SUM(BITS).  Each individual binary string 
%       encodes LENGTH(VLB)=LENGTH(VUB)=LENGTH(BITS) variables. 
%       COARSE is the coarseness of the binary mapping and is also 
%       of length LENGTH(VUB). 
% 
%  this *.m file created by combining "decode.m" from the MathWorks, Inc. 
%  originally created by Andrew Potvin in 1993, with "GDECODE.FOR" written 
%  by William A. Crossley in 1996. 
% 
% William A. Crossley, Assoc. Prof. School of Aero. & Astro. 
%  Purdue University, 2001 
% 
%  gen is an array [population size , string length], each row is one individual's 
chromosome 
%  vlb is a row vector [number of parameters], each entry is the lower bound for a 
variable 
%  vub is a row vector [number of parameters], each entry is the upper bound for a 
variable 
%  bits is a row vector [number of parameters], each entry is number of bits used for 
a variable 
% 
 
no_para = length(bits); % extract number of parameters using number of rows in bits 
vector 
npop = size(gen,1);  % extract population size using number of rows in 
gen array 
x = zeros(npop, no_para);  % sets up x as an array [population size, number of 
parameters] 
coarse = zeros(1,no_para); % sets up coarse as a row vector [number of parameters] 
 
for J = 1:no_para,  % extract the resolution of the parameters 
 coarse(J) = (vub(J)-vlb(J))/(2^bits(J)-1); % resolution of parameter J 
end 
 
for K = 1:npop,  % outer loop through each individual (there may be a more efficient 
way to operate on the 
                  % gen array) BC 10/10/01 
 sbit = 1;  % initialize starting bit location for a parameter 
 ebit = 0;  % initialize ending bit location 
 
   for J = 1:no_para, % loop through each parameter in the problem 
    ebit = bits(J) + ebit; % pick the end bit for parameter J 
  accum = 0.0;    % initialize the running 
sum for parameter J 
      ADD = 1;      % add / subtract flag for 
Gray code; add if(ADD), subtract otherwise 
      for I = sbit:ebit,   % loop through each bit in parameter J 
         pbit = I + 1 - sbit;  % pbit determines value to be added or 
subtracted for Gray code 
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         if (gen(K,I))     % if "1" is at current 
location 
            if (ADD)      % add if 
appropriate 
               accum = accum + (2.0^(bits(J)-pbit+1) - 1.0); 
               ADD = 0;     % next time subtract 
            else 
               accum = accum - (2.0^(bits(J)-pbit+1) - 1.0); 
               ADD = 1;     % next time add 
            end 
         end 
      end        % end of I 
loop through each bit 
      x(K,J) = accum * coarse(J) + vlb(J);   % decoded parameter J for 
individual K 
      sbit = ebit + 1;        
  % next parameter starting bit location 
   end      % end of J loop through each 
parameter 
end      % end of K loop through each individual 
 
%end gdecode 
 
 
function [new_gen,mutated] = mutate(old_gen,Pm) 
%MUTATE Changes a gene of the OLD_GEN with probability Pm. 
% [NEW_GEN,MUTATED] = MUTATE(OLD_GEN,Pm) performs random 
%       mutation on the population OLD_POP.  Each gene of each 
%       individual of the population can mutate independently 
%       with probability Pm.  Genes are assumed possess boolean 
%       alleles.  MUTATED contains the indices of the mutated genes. 
% 
% Copyright (c) 1993 by the MathWorks, Inc. 
% Andrew Potvin 1-10-93. 
 
mutated = find(rand(size(old_gen))<Pm); 
new_gen = old_gen; 
new_gen(mutated) = 1-old_gen(mutated); 
 
% end mutate 
 
 
function [new_gen,nselected] = tourney(old_gen,fitness) 
%TOURNEY Creates NEW_GEN from OLD_GEN, based on tournament selection. 
%  [NEW_GEN,NSELECTED] = TOURNEY(OLD_GEN,FITNESS) selects 
%        individuals from OLD_GEN by competing consecutive individuals 
%  after random shuffling.  NEW_GEN will have the same number of 
%  individuals as OLD_GEN. 
%        NSELECTED contains the number of copies of each individual 
%  that survived.  This vector corresponds to the original order 
%  of OLD_GEN. 
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% 
%  Created on 1/21/96 by Joel Grasmeyer 
 
% Initialize nselected vector and indices of old_gen 
new_gen = []; 
nselected = zeros(size(old_gen,1),1); 
i_old_gen = 1:size(old_gen,1); 
 
% Perform two "tournaments" to generate size(old_gen,1) new individuals 
for j = 1:2, 
 
  % Shuffle the old generation and the corresponding fitness values 
  [old_gen,i_shuffled] = shuffle(old_gen); 
  fitness = fitness(i_shuffled); 
  i_old_gen = i_old_gen(i_shuffled); 
 
  % Keep the best of each pair of individuals 
  index = 1:2:(size(old_gen,1)-1); 
  [min_fit,i_min] = min([fitness(index);fitness(index+1)]); 
  selected = i_min + [0:2:size(old_gen,1)-2]; 
  new_gen = [new_gen; old_gen(selected,:)]; 
 
  % Increment counters in nselected for each individual that survived 
  temp = zeros(size(old_gen,1),1); 
  temp(i_old_gen(selected)) = ones(length(selected),1); 
  nselected = nselected + temp; 
 
end 
 
% end tourney 
 
 
function [new_gen,index] = shuffle(old_gen) 
%SHUFFLE Randomly reorders OLD_GEN into NEW_GEN. 
%  [NEW_GEN,INDEX] = MATE(OLD_GEN) performs random reordering 
%        on the indices of OLD_GEN to create NEW_GEN. 
%  INDEX is a vector containing the shuffled row indices of OLD_GEN. 
% 
%  Created on 1/21/96 by Joel Grasmeyer 
 
[junk,index] = sort(rand(size(old_gen,1),1)); 
new_gen = old_gen(index,:); 
 
% end shuffle 
 
 
function [new_gen,sites] = uniformx(old_gen,Pc) 
%UNIFORMX Creates a NEW_GEN from OLD_GEN using uniform crossover. 
%   [NEW_GEN,SITES] = UNIFORMX(OLD_GEN,Pc) performs uniform crossover 
%         on consecutive pairs of OLD_GEN with probability Pc. 
%   SITES shows which bits experienced crossover.  1 indicates 
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%   allele exchange, 0 indicates no allele exchange.  SITES has 
%   size(old_gen,1)/2 rows. 
% 
%     Created 1/20/96 by Joel Grasmeyer 
 
new_gen = old_gen; 
sites = rand(size(old_gen,1)/2,size(old_gen,2)) < Pc; 
for i = 1:size(sites,1), 
  new_gen([2*i-1 2*i],find(sites(i,:))) = old_gen([2*i 
2*i-1],find(sites(i,:))); 
end 
 
% end uniformx 

 


